Стратегии одномерной оптимизации  

Стратегии одномерной оптимизации

Типы одномерных функций. Одномерная оптимизация относится к наиболее простому типу оптимизационных задач. Однако их более детальный анализ целесообразен, т.к. одномерные методы оптимизации часто используются в задачах, ориентированных на многомерные ситу­ации.

В инженерной практике приходится использовать как непрерывные, так и разрывные функции, в том числе и дискретные.

Рис. 6.44 Виды разрывных функций

Следует отметить, что метод, эффективный при анализе непрерывных функций, может оказаться неэффективным при исследовании разрывных функций, хотя обратное не исключается.

В дополнение к перечисленным выше свойствам можно также классифицировать функции в соответствии с их формой, определяющей топологические свойства функций в рассматриваемом интервале

а) б)

Рис 6.45 Виды непрерывных функций

Монотонные функции. Функция f(х) является монотонной (как при возрастании, так и при убывании), если для двух произвольных точек х1 и х2, таких, что х1 £ х2, выполняется одно и следующих неравенств:

f(х1)£ f(х2) (монотонно возрастающая функция),

f(х1)³ f(х2) (монотонно убывающая функция).

На рис. 6.45 а представлен график, монотонно возрастающей функции а на рис. 6.45 б – график монотонно убывающей функции. Заметим, что монотонная функция не обязательно должна быть непрерывной. На рис. 6.46 изображен график функции, которая монотонно убывает при х£ 0 и монотонно возрастает при х ³ 0.

Рис. 6.46 Унимодальная функция

Определение:

Функция f(х) является унимодальной на отрезке а£ х £ в в том и только том случае, если она монотонна по обе стороны от единственной на рассматриваемом интервале оптимальной точке х*. Другими словами, если х* – единственная точка минимума f(х) на отрезке а£ х £ в, то f(х) оказывается унимодальной на данном интервале тогда и только тогда, когда для точек х1 и х2:

Из х* £ х1 £ х2 f(х*) £ f(х1) £ f(х2)

Из х* ³ х1 ³ х2 f(х*) £ f(х1) £ f(х2)

Рис. 6.47 Унимодальные функции

Как показано на рис. 6.47 унимодальная функция не обязательно должна быть непрерывной. Унимодальность функций являйся исключительно важным свойством, которое широко используется в оптимизационных исследованиях. Вопросы, связанные с этим свойством функций, рассматриваются ниже.

Критерии оптимальности. При анализе оптимизационных задач, как правило, возникают два общих вопроса.

1. Вопрос анализа «в статике». Как определить, представляет ли данная точка х* оптимальное решение задачи?



2. Вопрос анализа «в динамике» Если х* не является точкой оптимума, то какая последовательность действий приводит к получению оптимального решения?

В этом разделе основное внимание уделяется решению вопроса анализа «в статике», а именно построению множества критериев оптимальности, позволяющих определить, является ли данное ре­шение оптимальным.


statya-11-predmet-regulirovaniya-nastoyashego-kodeksa.html
statya-11-soglasie-na-lechenie.html
    PR.RU™